# $\begin{array}{c} P425/1 \\ PURE\ MATHEMATICS \\ Paper\ 1 \\ 3\ hours \end{array}$

# Uganda Advanced Certificate of Education FACILITATION PAPER 2024

#### PURE MATHEMATICS

# Paper 1

3 hours

#### **Important Instructions:**

Answer all the eight questions in section A and any five questions from section B.

Any additional question(s) answered will **not** be marked.

All necessary working must be shown clearly.

Begin each answer on a fresh sheet of paper.

Graph paper is provided.

Silent, non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

© 2024. Turn Over

## SECTION A: (40 MARKS)

- 1. Solve the equation  $\sqrt{(2x+3)} \sqrt{(x-2)} = 2$ . (05 marks)
- 2. Evaluate  $\int_0^{\pi/2} \sin^2 \theta \cos^3 \theta d\theta$ . (05 marks)
- 3. A straight line AB of length 10 units is free to move with its ends on the axes. Find the locus of a point P on the line at a distance of 3 units from the end on the x-axis.

 $(05 \ marks)$ 

- **4.** Use Demoivre's theorem to find the square roots of  $-2 + 2\sqrt{3}i$ . (05 marks)
- 5. Solve the equation  $\cos^2 2\theta + 5\sin^2 2\theta = 4$ , for the range  $0 \le \theta \le \frac{\pi}{2}$ . (05 marks)
- **6.** Use calculus of small changes to estimate  $\log_2 7.95$ . (05 marks)
- 7. Find the coordinates of the point where the line  $\mathbf{r} = \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$  meets the plane

$$r \cdot \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = 11.$$
 (05 marks)

8. The radius of a cylinder is increasing at the rate of 1 cm/min, while the height is increasing at the rate of 0.5 cm/min. Find the rate of change of the volume of the cylinder when the radius is 5 cm and the height is 10 cm.

(05 marks)

### SECTION B: (60 MARKS)

- 9. (a) Show that, if the equations  $x^2 + 2x + a = 0$  and  $x^2 + bx + 3 = 0$  have a common root, then  $(3-a)^2 = (6-ab)(b-2)$ . (05 marks)
  - (b) The polynomial  $p(x) = x^4 + Ax^3 + Bx^2 + Cx + 1$  is divisible by  $(x+1)^2$  and leaves a remainder of 12 when divided by x-1. Find the values of A, B and C. (07 marks)
- **10.** Given the curve  $y = \frac{8}{x^2 4}$ , determine the;
  - (a) coordinates of the turning point of the curve. (03 marks)
  - (b) equation of the asymptotes. Hence, sketch the curve. (09 marks)
- 11. (a) If  $x^3$  and higher powers of x may be neglected, express  $\left(1 + \frac{5x}{2} \frac{3x^2}{2}\right)^8$  in the form  $1 + ax + bx^2$ .

- (b) Find the first three terms in the expansion of  $\frac{1}{\sqrt{4+x}}$  in ascending powers of x. Hence, obtain an approximation for  $\frac{1}{\sqrt{4.16}}$ .
- **12.** (a) Given that  $y = \sqrt{\left(\frac{\sin 3\theta}{1 + \cos 3\theta}\right)}$ , find  $\frac{dy}{dx}$  in its simplest form. (05 marks)
  - (b) A curve is given parametrically by  $x = 2t + 4t^3$ ,  $y = t^2 + 3t^4$ . Determine the coordinates of the points on the curve where  $\frac{d^2y}{dx^2} = \frac{1}{14}$ . (07 marks)
- **13.** Consider the points A(1, -1, 2) and B(5, -1, -1).
  - (a) Find the equation of the line L through A and B. (04 marks)
  - (b) Find the equation of the plane perpendicular to L, and which passes through A.

    (04 marks)
  - (c) Find a point on L which is 20 units from A. (04 marks)
- **14.** (a) Solve the equation  $\sin 2x + \sin 3x + \sin 5x = 0$ , for  $0 < x < 360^{\circ}$ . (05 marks)
  - (b) Show that  $\frac{\cos(45^0 + \theta)}{\cos(45^0 \theta)} = \frac{1 \tan \theta}{1 \tan \theta}$ . Hence solve  $4\cos(45^0 + \theta) = \cos(45^0 \theta)$  for  $0^0 < \theta < 90^0$ . (07 marks)
- 15. Show that the line y = mx + c touches the hyperbola  $b^2x^2 a^2y^2 = a^2b^2$  if  $c^2 = a^2m^2 b^2$ . Hence find the equations of the tangents to the hyperbola  $9x^2 25y^2 = 225$  which are parallel to the line x y = 0. (12 marks)
- 16. Water is being heated in a kettle. At any time t seconds, the temperature of the water is  $\theta^0 C$ . The rate of increase of the temperature of water is at any time t is given by the differential equation

$$\frac{d\theta}{dt} = \lambda(120 - \theta), \quad \theta \le 100.$$

 $\lambda$  is a constant. When  $\theta = 20^{\circ}C$ ,  $\frac{d\theta}{dt} = 1^{\circ}\mathbb{S}$  and t = 0. The kettle switches off when  $\theta = 100^{\circ}c$ 

(a) Solve the differential equation and hence show that

$$\theta = 120 - 100e^{-0.01t}. (07 marks)$$

(b) Find the time to the nearest second when the kettle switches off. (05 marks)

**END**